۱.	Some animals are adapted to survive in very cold conditions such as the Arctic.
	Explain how the adaptations of Arctic animals help them to survive in cold conditions.

Q2.

This question is about carbon dioxide emissions.

The following table shows information about carbon dioxide emissions in the UK.

Year	Mass of carbon dioxide in kg × 10⁵					
	Emitted from electricity production	Emitted from paper production	Total emitted from all sources			
2006	1263	54	6314			
2009	902	32	55			
2012	1258	29	5567			
2015	768	27	5043			

Combined Science Biology Higher Easter Revision 2022

4				
1				
2				
2				
Suggest two reasor		e emissions from	electricity produc	ction
decreased from 201	2 to 2015.			
1				
2				
				_
		bon dioxide emiss	sions in 2006 tha	t was fror
electricity production				
electricity production	1.			
electricity production	ı.			
electricity production	1.			
electricity production	1. The state of th	Percentage =		
· ·	1. The state of th	Percentage =		
electricity production	1. The state of th	Percentage =		
electricity production	1. The state of th	Percentage =		
electricity production	1. The state of th	Percentage =		
electricity production	1. The state of th	Percentage =		
electricity production	1. The state of th	Percentage =		
electricity production	1. The state of th	Percentage =		
electricity production	1. The state of th	Percentage =		

Combined Scie	nce Biology	Higher East	ter Revision 2022
			(6) (Total 12 marks)
O3			
Q3. Many biotic	and abiotic fa	ictors can aff	ect the growth of plants.
(a) Are th	e factors in Ta	able 1 biotic o	or abiotic?
Tick o	ne box for ea	ch factor.	
			Table 1
Fastan	Dietie	Abiatia	1
Factor	Biotic	Abiotic	
Diseases Herbivores			
Temperature	+		
Water			
VVator			
			(2)
Two studen	ts investigated	d the effect of	f light intensity on the distribution of small plants.
The plants a	are growing u	nder a tree in	a park.
The student	s made the fo	ollowina hvpo	thesis:
	As you move	outwards fro	m a tree there will be more plant growth.'
(b) Explai	n why the stu	dents though	t their hypothesis would be correct.
			

		(3)
(c)	The students used two pieces of equipment.	
	Give the scientific name of each piece of equipment.	
	A square frame measuring 0.5 m × 0.5 m	
	An electronic device to measure light intensity	
		(2)

This is the method used.

- 1. Fix one end of a tape measure at the base of the tree.
- 2. Fix the other end of the tape measure 11 metres from the tree.
- 3. At 0 metres put the square frame on the ground.
- 4. Identify all the plant species growing inside the frame./p>
- 5. Estimate and record the percentage cover of each plant species.
- 6. Measure the light intensity inside the frame.
- 7. Put the square frame on the ground every 2 metres along the tape to 10 metres.
- 8. Repeat steps 4 6 in every frame.

The diagram below shows the equipment in this investigation.

(d) Calculate the total area sampled.

Total area sampled = _____ m²

(1)

(e) The whole investigation was done as quickly as possible on the same day.

Suggest one reason why.

Tab	le 2 shows the results.							
				Table	2			
		D	istanc	e fron	1 tree	in metr	es	
		0	2	4	6	8	10	
	ge cover of grass	15	50	35	16	15	15	
	ge cover of plantain	0	5	10	40	25	30	
	ge cover of daisy	0	0	0	4	20	10	
	ge cover of clover centage cover of	1	10	25	40	40	45	
lants	centage cover or	16	65	70	100	100	100	
ight inte	nsity in arbitrary units	37	59	150	175	>200	>200	
(h) What conclusion can be total percentage cove								
(h)		r of plai	nts?		elation	ship be	etween I	ight intensity and t
(h)	total percentage cove	r of plai	nts?		elation	ship be	etween I	ight intensity and t
(h)	total percentage cover Use data from Table :	r of plai in you ot be th	nts? r answ	ver.	nis pat	tern of _l	plant dis	
	Light intensity might no Suggest one different	ot be the	nts? Ir answ ne caus	ver.	nis pat	tern of _l	plant dis	
	total percentage cover Use data from Table :	ot be the	nts? Ir answ ne caus	ver.	nis pat	tern of _l	plant dis	

	Reason	
		(2) (Total 15 marks)
Q4.		
Read	the following.	
	Os farmers in India could not grow enough rice to feed the reasing population.	
I .	rnational Rice Research Institute (IRRI) scientists began a preeding programme with 10 000 different varieties of rice	
	e IRRI produced a new variety called IR8 which gave a yield of mes the traditional varieties. IR8 has short stems and large rice	
IR8 was g	rown by farmers all over India so people had enough to eat.	
(a)	The IR8 variety of rice was produced by selective breeding.	
	Describe the steps the scientists would have taken to produce IR8	3
		
		(4)
(b)	The IRRI has now developed several new varieties of genetically plants.	modified (GM) rice
	Some people in India agree and some people disagree with GM v being grown.	rarieties of rice

Explain why.	
	(4)
	(Total 8 marks)

Q5.

The graph below shows how hormone concentrations vary during a normal human menstrual cycle if a woman does not become pregnant.

(a) Calculate the rate of increase in LH concentration between day 9 and day 12 Give your answer in arbitrary units per hour.

Give your answer to 2 significant figures.

	Rate = arbitrary units per hou
I	Describe the sequence of hormone interactions in the menstrual cycle.
	Name where each hormone is produced.
-	
-	
-	
-	
-	
F	Progesterone is used in some contraceptives.
	Suggest one advantage of using a progesterone patch rather than a progesterone oral contraceptive.

Q6.

Many people eat shellfish called oysters.

An oyster has 20 chromosomes in each body cell.

Combined Science Biology Higher Easter Revision 2022

	Tick one box.	
One X and chromosol	d one Y chromosome and 8 pairs of other mes	
Two X and		
One X and chromosol		
Two X chromosol	omosomes and 9 pairs of other mes	
(b)	Oyster gametes only contain half the amount body cell. Describe the type of cell division that produ	
		(3
	gists have discovered a way to produce oys mosomes (triploid) instead of the usual two s	
The t	riploid oysters cannot reproduce and so they	grow more quickly.
Diplo all ye	id oysters do not taste good in the reproducter.	ive season. Triploid oysters taste good
The	diagram below shows the chromosomes in a	diploid cell and in a triploid cell.
Only	two sets of chromosomes are shown.	

(a) Which arrangement of chromosomes will a male oyster have in each body cell?

Diploid cell Triploid cell

_	
E	explain why the triploid oysters grow more quickly than the diploid oysters.
_	
	he population of diploid oysters growing in the wild has reduced by over 80% in the ast 20 years.
S	Suggest two environmental factors which may be causing this reduction.
G	Give a reason why each factor may be causing the reduction in the population.
1	·

(2)

(f) Oyster farmers grow the triploid oysters from young seed oysters.

Cytochalasin B has been shown to cause cancer in mice.
Evaluate the production of triploid oysters for supermarkets and restaurants.
(6) (Total 15 marks)

Q7.

Some students wanted to estimate the number of plantain plants in a grassy field.

The field measured 100 metres × 50 metres.

The students:

- chose areas where plantains were growing
- placed 10 quadrats in these areas
- counted the number of plantains in each of the 10 quadrats.

Each quadrat measured 25 cm × 25 cm.

The table below shows the students' results.

Quadrat number	Number of plantain plants
1	2
2	1
3	4
4	1
5	3
6	2

7	4
8	1
9	1
10	1

	1	
	Complete the following calculation to estimate the number of plantain field.	plants in the
	Use the students' results from the table above.	
	Total number of plantains in 10 quadrats =	
	Total area of 10 quadrats =	m²
	Mean number of plantains per m ² =	
	Area of field =	m²
,	Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of	
	Therefore estimated number of plantains in field =	f plantain
	Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field.	f plantain
	Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field. Describe three improvements you could make to the students' method. For each improvement, give the reason why your method would produce.	f plantain d. dce more valid
	Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field. Describe three improvements you could make to the students' method. For each improvement, give the reason why your method would produce that the students' method.	f plantain d. dce more valid
	Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field. Describe three improvements you could make to the students' method. For each improvement, give the reason why your method would produce that the students' method. Improvement 1	f plantain

(3)

(Total 6 marks)