| ۱. | Some animals are adapted to survive in very cold conditions such as the Arctic. | |----|--| | | Explain how the adaptations of Arctic animals help them to survive in cold conditions. | ## Q2. This question is about carbon dioxide emissions. The following table shows information about carbon dioxide emissions in the UK. | Year | Mass of carbon dioxide in kg × 10⁵ | | | | | | |------|-------------------------------------|-------------------------------|--------------------------------|--|--|--| | | Emitted from electricity production | Emitted from paper production | Total emitted from all sources | | | | | 2006 | 1263 | 54 | 6314 | | | | | 2009 | 902 | 32 | 55 | | | | | 2012 | 1258 | 29 | 5567 | | | | | 2015 | 768 | 27 | 5043 | | | | # Combined Science Biology Higher Easter Revision 2022 | 4 | | | | | |---------------------------|--|-------------------|--------------------|--------------| | 1 | | | | | | | | | | | | 2 | | | | | | 2 | | | | | | | | | | | | | | | | | | Suggest two reasor | | e emissions from | electricity produc | ction | | decreased from 201 | 2 to 2015. | | | | | 1 | | | | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | | _ | | | | | | | | | | bon dioxide emiss | sions in 2006 tha | t was fror | | electricity production | | | | | | electricity production | 1. | | | | | electricity production | ı. | | | | | electricity production | 1. | | | | | electricity production | 1. The state of th | Percentage = | | | | · · | 1. The state of th | Percentage = | | | | electricity production | 1. The state of th | Percentage = | | | | electricity production | 1. The state of th | Percentage = | | | | electricity production | 1. The state of th | Percentage = | | | | electricity production | 1. The state of th | Percentage = | | | | electricity production | 1. The state of th | Percentage = | | | | electricity production | 1. The state of th | Percentage = | | | | electricity production | 1. The state of th | Percentage = | | | | Combined Scie | nce Biology | Higher East | ter Revision 2022 | |---------------------|------------------------|-----------------|--| (6)
(Total 12 marks) | | O3 | | | | | Q3. Many biotic | and abiotic fa | ictors can aff | ect the growth of plants. | | | | | | | (a) Are th | e factors in Ta | able 1 biotic o | or abiotic? | | Tick o | ne box for ea | ch factor. | | | | | | Table 1 | | Fastan | Dietie | Abiatia | 1 | | Factor | Biotic | Abiotic | | | Diseases Herbivores | | | | | Temperature | + | | | | Water | | | | | VVator | | | | | | | | (2) | | Two studen | ts investigated | d the effect of | f light intensity on the distribution of small plants. | | The plants a | are growing u | nder a tree in | a park. | | The student | s made the fo | ollowina hvpo | thesis: | | | | | | | | As you move | outwards fro | m a tree there will be more plant growth.' | | (b) Explai | n why the stu | dents though | t their hypothesis would be correct. | | | | | | | | | | | | | (3) | |-----|--|-----| | (c) | The students used two pieces of equipment. | | | | Give the scientific name of each piece of equipment. | | | | A square frame measuring 0.5 m × 0.5 m | | | | An electronic device to measure light intensity | | | | | (2) | This is the method used. - 1. Fix one end of a tape measure at the base of the tree. - 2. Fix the other end of the tape measure 11 metres from the tree. - 3. At 0 metres put the square frame on the ground. - 4. Identify all the plant species growing inside the frame./p> - 5. Estimate and record the percentage cover of each plant species. - 6. Measure the light intensity inside the frame. - 7. Put the square frame on the ground every 2 metres along the tape to 10 metres. - 8. Repeat steps 4 6 in every frame. The diagram below shows the equipment in this investigation. (d) Calculate the total area sampled. _____ Total area sampled = _____ m² (1) (e) The whole investigation was done as quickly as possible on the same day. Suggest one reason why. | Tab | le 2 shows the results. | | | | | | | | |--|---|-----------------------------|-----------------------|--------|---------|----------------------|-----------|----------------------| | | | | | Table | 2 | | | | | | | D | istanc | e fron | 1 tree | in metr | es | | | | | 0 | 2 | 4 | 6 | 8 | 10 | | | | ge cover of grass | 15 | 50 | 35 | 16 | 15 | 15 | | | | ge cover of plantain | 0 | 5 | 10 | 40 | 25 | 30 | | | | ge cover of daisy | 0 | 0 | 0 | 4 | 20 | 10 | | | | ge cover of clover
centage cover of | 1 | 10 | 25 | 40 | 40 | 45 | | | lants | centage cover or | 16 | 65 | 70 | 100 | 100 | 100 | | | ight inte | nsity in arbitrary units | 37 | 59 | 150 | 175 | >200 | >200 | | | (h) What conclusion can be total percentage cove | | | | | | | | | | (h) | | r of plai | nts? | | elation | ship be | etween I | ight intensity and t | | (h) | total percentage cove | r of plai | nts? | | elation | ship be | etween I | ight intensity and t | | (h) | total percentage cover Use data from Table : | r of plai in you ot be th | nts?
r answ | ver. | nis pat | tern of _l | plant dis | | | | Light intensity might no Suggest one different | ot be the | nts? Ir answ ne caus | ver. | nis pat | tern of _l | plant dis | | | | total percentage cover Use data from Table : | ot be the | nts? Ir answ ne caus | ver. | nis pat | tern of _l | plant dis | | | | Reason | | |-----------|--|-------------------------| | | | (2)
(Total 15 marks) | | Q4. | | | | Read | the following. | | | | Os farmers in India could not grow enough rice to feed the reasing population. | | | I . | rnational Rice Research Institute (IRRI) scientists began a preeding programme with 10 000 different varieties of rice | | | | e IRRI produced a new variety called IR8 which gave a yield of mes the traditional varieties. IR8 has short stems and large rice | | | IR8 was g | rown by farmers all over India so people had enough to eat. | | | (a) | The IR8 variety of rice was produced by selective breeding. | | | | Describe the steps the scientists would have taken to produce IR8 | 3 | | | | | | | | | (4) | | (b) | The IRRI has now developed several new varieties of genetically plants. | modified (GM) rice | | | Some people in India agree and some people disagree with GM v being grown. | rarieties of rice | | Explain why. | | |--------------|-----------------| (4) | | | (Total 8 marks) | ### Q5. The graph below shows how hormone concentrations vary during a normal human menstrual cycle if a woman does not become pregnant. (a) Calculate the rate of increase in LH concentration between day 9 and day 12 Give your answer in arbitrary units per hour. Give your answer to 2 significant figures. | | Rate = arbitrary units per hou | |---|---| | I | Describe the sequence of hormone interactions in the menstrual cycle. | | | Name where each hormone is produced. | | | | | | | | - | | | | | | - | | | - | | | | | | - | | | - | | | F | Progesterone is used in some contraceptives. | | | Suggest one advantage of using a progesterone patch rather than a progesterone oral contraceptive. | # Q6. Many people eat shellfish called oysters. An oyster has 20 chromosomes in each body cell. Combined Science Biology Higher Easter Revision 2022 | | Tick one box. | | |---------------------|---|---| | One X and chromosol | d one Y chromosome and 8 pairs of other mes | | | Two X and | | | | One X and chromosol | | | | Two X chromosol | omosomes and 9 pairs of other
mes | | | (b) | Oyster gametes only contain half the amount body cell. Describe the type of cell division that produ | | | | | | | | | (3 | | | gists have discovered a way to produce oys mosomes (triploid) instead of the usual two s | | | The t | riploid oysters cannot reproduce and so they | grow more quickly. | | Diplo
all ye | id oysters do not taste good in the reproducter. | ive season. Triploid oysters taste good | | The | diagram below shows the chromosomes in a | diploid cell and in a triploid cell. | | Only | two sets of chromosomes are shown. | | (a) Which arrangement of chromosomes will a male oyster have in each body cell? # Diploid cell Triploid cell | _ | | |---|---| | E | explain why the triploid oysters grow more quickly than the diploid oysters. | | _ | | | | | | | | | | | | | he population of diploid oysters growing in the wild has reduced by over 80% in the ast 20 years. | | S | Suggest two environmental factors which may be causing this reduction. | | G | Give a reason why each factor may be causing the reduction in the population. | | 1 | · | (2) (f) Oyster farmers grow the triploid oysters from young seed oysters. | Cytochalasin B has been shown to cause cancer in mice. | |---| | Evaluate the production of triploid oysters for supermarkets and restaurants. | (6)
(Total 15 marks) | ### Q7. Some students wanted to estimate the number of plantain plants in a grassy field. The field measured 100 metres × 50 metres. The students: - chose areas where plantains were growing - placed 10 quadrats in these areas - counted the number of plantains in each of the 10 quadrats. Each quadrat measured 25 cm × 25 cm. The table below shows the students' results. | Quadrat
number | Number of plantain plants | |-------------------|---------------------------| | 1 | 2 | | 2 | 1 | | 3 | 4 | | 4 | 1 | | 5 | 3 | | 6 | 2 | | 7 | 4 | |----|---| | 8 | 1 | | 9 | 1 | | 10 | 1 | | | 1 | | |---|--|------------------------------------| | | Complete the following calculation to estimate the number of plantain field. | plants in the | | | Use the students' results from the table above. | | | | Total number of plantains in 10 quadrats = | | | | Total area of 10 quadrats = | m² | | | Mean number of plantains per m ² = | | | | | | | | Area of field = | m² | | , | Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of | | | | Therefore estimated number of plantains in field = | f plantain | | | Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field. | f plantain | | | Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field. Describe three improvements you could make to the students' method. For each improvement, give the reason why your method would produce. | f plantain
d.
dce more valid | | | Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field. Describe three improvements you could make to the students' method. For each improvement, give the reason why your method would produce that the students' method. | f plantain
d.
dce more valid | | | Therefore estimated number of plantains in field = The students' method would not give a valid estimate of the number of plants in the field. Describe three improvements you could make to the students' method. For each improvement, give the reason why your method would produce that the students' method. Improvement 1 | f plantain | (3) (Total 6 marks)