Mark schemes

1.	(a)	uniform acceleration		
••		allow constant / steady acceleration		
		allow velocity / speed increasing at a constant rate		
		ignore reference to direction acceleration scores 1 mark		
		or		
		velocity / speed is increasing scores 1 mark		
		do not accept acceleration increases		
			2	
	(b)	up(wards)		
			1	
	(C)	a group of objects that interact		
	()		1	
	(d)	velocity just after bounce is less than just before bounce		
	()	allow velocity is less / decreases		
		velocity decreases to zero – on its own scores zero		
		or		
		the height at the top of the bounce is less than the height from which it was dropped		
			1	
		so the ball has lost energy		
			1	
		correct reference to (loss of) ke or (reduced) gpe		
			1	
		total energy of ball and Earth / ground is constant		
		allow 'a system' for ball and Earth		
		allow energy is conserved		
			1	
				[8]
2.	(a)	wavelength		
2.		this answer only		
			1	
	(b)	(extremely) hot and dense		
		ignore very small		
			1	
	(C)	(directly) proportional		
		allow a correct description of direct proportionality		
		ignore positive correlation	-	
			1	
	(d)	6 × 10 ²⁴		

1

	(e)	the furthest galaxies are moving the fastest	
			1
		(this suggests) the universe is expanding (from a very small region)	1
	(f)	expanding at (an ever) greater rate	
		allow expanding faster	1
	(g)	any one from:	
		detects false claims	
		 allow provides credibility detects inaccurate data 	
		allow detects mistakes	
		detects bias	
		 allow removes bias verifies new data 	
		allow checks validity	
		provides a consensus (of opinion)	
		ignore shows data is accurate ignore proves a theory	
			1
	(h)	wavelength (seems to have) decreased	
			1
		frequency (seems to have) increased	
			1
			[10]
3.	(a)	P-waves are longitudinal and S-waves are transverse	
			1
	(b)	0.4	
	()		1
	(C)	wave speed = frequency × wavelength	
		allow $v = f \lambda$	
			1

(d) $7200 = 0.4 \times \text{wavelength}$

	wavelength = $\frac{7200}{0.4}$	1
	wavelength = 18 000 (m)	
	allow up to full marks for ecf using their answer to part (b)	
	a method shown as 7200 × 2.5 = 18 000 scores 0 marks	
	an answer 18 000 scores 3 marks	1
(e)	because S-waves cannot travel through a liquid	1
	and S-waves do not travel through the (outer) core allow some (seismic) waves cannot travel through a liquid and do not go through the core for 1 mark	1
(f)	magnetic field around the coil changes or	
	the magnetic field (lines) cut by the coil allow the generator effect	1
(g)	because the magnet changes direction	1
(h)	stationary	1

1

- (i) any **two** from:
 - stronger magnetic field
 allow stronger magnet
 allow heavier magnet
 bigger magnet is insufficient
 - more turns on the coil
 bigger coil is insufficient
 do **not** accept more coils of wire
 - turns pushed closer together
 - spring with a lower spring constant allow less stiff spring allow weaker spring do not accept add an iron core
- (a) all heights drawn the same as tube 1 *judge by eye*

4.

(b) increasing depth increases the height / mass / volume (of the water column) above the swimmer

allow more water above (the swimmer) more water is insufficient

increasing the weight / force (of water) acting on the swimmer

- (c) increase in depth = 1.2 (m)
 - (Δ) p = 1.2 × 1030 × 9.8 allow either 0.50 **or** 1.70 for 1.2
 - $(\Delta) p = 12112.8$
 - allow a correctly rounded answer allow a correct calculation using either 0.50 **or** 1.70
 - pascals **or** Pa

do **not** accept pa allow N/m²

an answer of 12 112.8 scores 3 marks

2

1

1

1

1

1

1

1

[13]

 (b) accept any practical suggestion that could cause a range of values e.g. misjudging the centre of the ray e.g. not replacing mirror / ray box in the same position measuring the angle incorrectly is insufficient moving the mirror / ray box is insufficient 	1
measuring the angle incorrectly is insufficient	1
(c) range = 10	
or mean of 51 calculated	1
E (0)	1
5(°) an answer of 5(°) scores 2 marks	1
 (d) within experimental accuracy the angle of incidence and the angle of reflection are the same 	
allow the angle of incidence is nearly the same as the angle of reflection	
or the angle of reflection is usually different to the angle of incidence	
allow only a few of the values are the same / similar allow the idea of a range of values	1
relevant use of data	1
e.g. at 20° / 30° / 40° there is at least one measurement of angle of reflection that is exactly the same	
or at 50° there are big differences	
allow 50° includes anomalous results	
an answer in terms of calculated mean(s) may score both marks	
e.g. mean calculated for one or more angle of reflection (1) conclusion correctly stating angle i = / ≠ angle r (1)	1
(e) results could be collected for angles (of incidence) not yet measured	
allow a stated angle of incidence e.g. 10° or 60°	
changing the mirror is insufficient	
ignore repeat the measurements	1

	(f)	replace the mirror with an irregular reflecting surface		
		allow use an irregular reflecting surface replace mirror with paper is insufficient do not accept use a glass block		
			1	[8]
6.	(a)	arrow of equal size pointing vertically upwards		
		judged by eye ignore horizontal arrows if equal and opposite		
		horizontal arrows of unequal length negates this mark	1	
		labelled 'upthrust'		
		ignore buoyancy ignore 25 kN	1	
	(b)	weight = 25 kN		
		allow 24 to 25 kN inclusive	1	
		25 000 = mass × 9.8		
		or $m = \frac{25000}{9.8}$		
		allow their W correctly converted and substituted	1	
		m = 2551 kg		
		allow correctly calculated value using their converted W allow a value correctly calculated with W in kN	1	
		m = 2600 kg	•	
		allow a calculated answer correctly rounded to 2 significant figures		
		an answer of 2600 scores 4 marks	1	
	(c)	Newton's 3rd law (of motion)		
			1	

	(d)	vertical force (50 N) drawn and	
		horizontal force (150 N) drawn to the same scale	1
		resultant tension force in the correct direction shown by an arrowhead	1
		value of the tension force in the range 156 N−160 N allow a calculated value of 158	1
		value of direction in the range 18°−20° (from the horizontal) allow 70° to 72° (from the vertical) allow a bearing in the range 288 to 290	
			1 [11]
7.	(a)	 any one from: too few turns / coils on the secondary allow number of turns / coils on the primary was increased 	
		p.d. across the primary was reduced <i>ignore human error</i>	1
	(b)	the p.d. (across the secondary) goes above 2V allow p.d. across secondary is higher than p.d. across primary after 20 turns	1
	(c)	it increases (until the nails reach a constant temperature)	1

(d)
$$\frac{640}{4} = \frac{V_p}{1.75}$$

$$V_p = \frac{640 \times 1.75}{4}$$

$$V_p = 280 \text{ (V)}$$

$$280 \times I_p = 336$$

$$allow \text{ their calculated}$$

$$V_p \times I_p = 336$$

$$I$$

$$I_p = 1.2 \text{ (A)}$$

$$allow \text{ an answer that is consistent with their calculated}$$

$$value \text{ of } V_p$$

$$I$$

$$336 = I_s \times 1.75(1)$$

I_s =
$$\frac{336}{1.75}$$
 (1)

 $I_s = 192 (A) (1)$

$$I_p = 192 \times \frac{4}{640}$$
 (1)

allow

$$I_p$$
 = their calculated $I_s \times \frac{4}{640}$

 $I_p = 1.2 (A) (1)$

allow an answer that is consistent with their calculated value of I_s an answer of 1.2 (A) scores **5** marks

[8]

8.	(a)	(force of) gravity causes the satellite to accelerate (towards the Earth) allow satellite is (constantly) accelerating	1
		the acceleration causes a change in direction acceleration causes a change in speed negates this mark point	1
		velocity changes because direction changes	1
	(b)	length of orbit taken from graph = 42 100 (km)	1
		42 100 = 7.73 × time or time = $\frac{42100}{7.73}$ allow their distance = 7.73 × time	
		time (1 orbit) = 5446(s) allow a value consistent with their distance	1
		number of orbits = $\left(\frac{24 \times 3600}{5446}\right)$ = 15.86 allow $\left(\frac{24}{1.51}\right)$ = 15.86 allow a value consistent with their distance	
		number of orbits = 15 allow a value consistent with their distance an answer of 16 scores 4 marks	1

	length of orbit taken from graph = 42 100 (km) (1)		
	$7.73 = \frac{\text{distance}}{24 \times 3600}$ (1)		
	distance = 667 872 (km) (1)		
	number of orbits = $\left(\frac{667872}{42100}\right)$		
	= 15.86 (1)		
	allow a value consistent with their two distances		
	number of orbits = $15(1)$		
	allow a value consistent with their two distances		
	up to full marks can be awarded for a method calculating velocity in km/h and time in hours		
	an answer of 15 scores 5 marks		
(c)	the predicted data is very close to the actual data	1	
(d)	supported the prediction (made by Rede)	_	
(d)	supported the prediction (made by Bode) allow predicted and actual values are very close		
	anow predicted and actual values are very close	1	
	so provides evidence that the equation is true / correct / works / accurate		
	allow proves for provides evidence		
		1	
			[11]
(a)	it is harder to judge where the centre of a wider ray is		
		1	
	causing a larger uncertainty (in the measurements)		
	allow increasing <u>random</u> errors (in the measurements)	1	
<i></i> .		1	
(b)	line of best fit drawn and extrapolated to 80 degrees	1	
		•	
	41 (degrees) allow 40 to 43 (degrees)		
		1	

or

9.

(C)	steps are identified and logically sequenced.	5-6	
	Level 2: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the method is not fully logically sequenced.		
		3-4	
	Level 1 : The design/plan would not lead to a valid outcome. Some relevant steps are identified, but links are not made clear.	1–2	
	No relevant content		
		0	
	Indicative content:		
	place a glass block on a piece of paper		
	draw around the glass block		
	 use the ray box to shine a ray of light through the glass block 		
	mark the ray of light entering the glass block		
	 mark the ray of light emerging from the glass block is the points to show the path of the complete ray through the block 		
	 join the points to show the path of the complete ray through the block and draw a normal line at 90 degrees to the surface 		
	 use a protractor to measure the angle of incidence 		
	use a protractor to measure the angle of refraction		
	• use a ray box to shine a ray of light at a range of different angles (of incidence)		
	increase the angle of incidence in 10 degree intervals		
	 from an angle of incidence of 10 degrees to an angle of incidence of 70 degrees. 		
	allow use of optical pins instead of a ray box		
(d)	$\frac{(28+25+22)}{2}=25$		
(u)	3		
		1	
	3 (degrees)		
	allow alternative method		
	28 - 22 = 6(1)		
	= 3 (degrees) (1)		
		1	
(e)	Velocity		
(0)	Volocity	1	
			[13]
(a)	at least three circles drawn		
(a)		1	
		·	
	clockwise arrows on circles		
	allow 1 mark for one or two circles with clockwise		
	arrows	1	
		T	

(c) Level 3: The design/plan would lead to the production of a valid outcome. All key

10.

- (b) 4×10^{-6}
- (c) the sides of the coil (parallel to the magnet) experience a force (in opposite directions) allow the current creates a magnetic field ignore Fleming's Left Hand Rule

the forces cause moments that act in the same (clockwise / anticlockwise) direction **or**

the moments cause the coil to rotate (clockwise / anticlockwise)

allow the magnetic fields interact to create a pair of forces (acting in opposite directions) **or** allow the magnetic fields interact causing the coil to rotate

(each half-revolution) the two halves of the (rotating) commutator swap from one (carbon) brush to the other

(each half-revolution) the commutator reverses the current (in the coil) **or** keeping the forces in the same direction (keeping the coil rotating)

allow keeps the current in the same direction relative to

the (permanent) magnetic field

_

[7]

1

1

1

1

1